Performance Analysis of Parallel K-Means
Clustering on Student Academic Data: A
Scalable Approach for Educational
Intelligence

Gautam Appasaheb Kudale!, Dr. Gaurav Gupta?
Reseach Scholar, Dr. A.P.J. Abdul Kalam University, Indore, M.P., India'
Reseach Guide, Dr. A.P.J. Abdul Kalam University, Indore, M.P., India®

gaukudale@gmail.com

Abstract—The rapid growth of educational data has
necessitated scalable machine learning approaches
for effective analysis and prediction. Traditional K-
Means clustering, though efficient for small datasets,
faces scalability challenges with large and high-
dimensional data. This paper presents an
implementation of Parallel K-Means Clustering
using PySpark, designed to enhance computational
efficiency and accuracy for educational datasets.
Using the “Students Performance in Exams” dataset
from Kaggle, the study compares standard and
parallel K-Means algorithms across multiple metrics
such as Within-Cluster Sum of Squares (WCSS),
Silhouette Score, and Davies-Bouldin Index, along
with system-level metrics like speedup, efficiency,
and scalability. The results demonstrate that the
parallelized version significantly reduces execution
time and improves cluster quality. Furthermore,
integration with supervised models (KNN, SVM, NN,
and RF) shows enhanced classification accuracy—
up to 96% using Neural Networks—highlighting the
practical benefits of parallel clustering in
educational data mining. This work establishes a
foundation for deploying Parallel K-Means in real-
time educational intelligence systems, enabling rapid
and reliable insights into student performance
trends.

Index Terms - Parallel K-Means, Educational Data
Mining, PySpark, Scalability, Clustering, Student
Performance Dataset

1. INTRODUCTION
The explosion of data in the education domain
calls for efficient analytical models that can
extract actionable insights. Clustering algorithms

like K-Means are widely used for unsupervised
learning; however, their sequential nature limits
performance with large datasets. This research
explores a Parallel K-Means algorithm
implemented in PySpark to address these
limitations. The motivation stems from the need
for real-time educational intelligence, where
scalable clustering can aid in identifying learning
patterns and performance groups among
students.

The study’s primary objective is to analyze and
compare the performance of standard and
parallel K-Means clustering using the Students
Performance in Exams dataset. The parallel
approach leverages distributed computing to
accelerate convergence and handle large-scale
data efficiently. This investigation contributes to
advancing educational analytics by
demonstrating how parallelization enhances both
clustering accuracy and computational
efficiency.

II. RELATED WORKS

Extensive research has been conducted on
clustering optimization and parallelization.
Studies such as Song et al. (2024) proposed
privacy-preserving parallel clustering for large
datasets, while Dafir and Slaoui (2022)
demonstrated Spark-based parallel algorithms
achieving significant performance gains.
Mhembere et al. (2017) introduced Knor, a
NUMA-optimized K-Means library, and

Page | 23

mailto:gaukudale@gmail.com

Bellavita et al. (2025) leveraged GPU
acceleration for faster kernel K-Means
operations. In education, clustering has been
effectively used to analyze student performance
and group learning behaviors, but few studies
explore parallel clustering in this domain. Hence,
this paper fills a crucial research gap by applying
a Parallel K-Means framework specifically for
student performance data analysis.

III. PROBLEM DEFINITION

The traditional K-Means algorithm suffers from
computational inefficiency when applied to large
educational datasets due to its sequential
computation, slow convergence, and inability to
exploit multi-core architectures. Problem
Statement: To overcome the scalability and
speed limitations of traditional K-Means in
educational data analysis by implementing a
Parallel K-Means clustering algorithm using
distributed computing, thereby improving
execution time and clustering quality for large
student datasets.

IV. PROPOSED METHODOLOGY

Dataset Description: The Students Performance
in Exams dataset from Kaggle includes attributes
such as gender, race/ethnicity, parental education
level, lunch type, test preparation course, and
scores in math, reading, and writing. The dataset
contains 1000 records initially, and then the
dataset is populated to 10000 to 100000. Data
preprocessing involved handling missing values,
normalization, and applying SMOTE for class
balancing. Following table shows detailed
information of all attributes of the Students
Performance in Exams dataset.

Table 1. Variables Description of Students
Performance in Exams dataset.

Race/ethnicity | category A, Ethnicity of
category B, the student
category C,
category D,
category E
Parental level | bachelor's Educational
of education degree background
some college | of the parents
master's
degree
associate's
degree
high school
some high
school
Lunch Standard, Quality of
Free/Reduced | lunch
Test Completed, Completing
preparation Not the Test
course Completed Preparation
course
Math score 0-100 Student’s
math score
Reading score | 0-100 Student’s
reading
SCore
Writing score | 0-100 Student’s
writing
SCore

Variable Values Variable

name Description

Gender Male, Female | Student’s
gender

Figure 1 Categorical Data Distribution and
Characteristics

Algorithm Implementation: Tools used
include Python, Apache Spark (PySpark), and
Pandas. The data is partitioned across multiple
Spark nodes, where each node performs centroid
assignment and update independently.
Evaluation metrics include cluster quality
(WCSS, Silhouette Score, Davies-Bouldin
Index) and computational efficiency (execution

Page | 24

time, speedup, efficiency, scalability,

throughput).

Select number of clusters (k) |

}

Set initial cluster centers

)

Partition dataset across processors

)

’ Assign data points in parallel

e

Recalculate cluster centers in parallel

Check convergence?

INo

Figure 2: Parallel K-Mean Process

The flowchart illustrates the iterative process of
Parallel K-Means

1. Start: The process begins here, marking the
start of the Parallel K-Means clustering
algorithm.

2. Select number of clusters (k): The number of
clusters, k, is specified by the user. This
determines how many clusters the algorithm will
aim to form.

3. Set initial cluster centers: The algorithm
randomly selects initial cluster centers
(centroids) from the dataset. These serve as the
initial guess for cluster centers.

4. Partition dataset across processors: The entire
dataset is divided into smaller partitions, which
are distributed across multiple processors. This is
a key aspect of the parallel version, where
different portions of the data are handled
independently to speed up the computation.

5. Assign data points in parallel: Each processor,
working on its partition, assigns data points to
the closest cluster center. This task is performed
simultaneously — across processors, taking
advantage of parallel execution.

6. Recalculate cluster centers in parallel: After
assigning the data points to clusters, each
processor recalculates the cluster centers based
on the assigned data points. This recalculation is
done independently on each processor in parallel.

7. Check convergence: The algorithm checks
whether the cluster centers have stabilized
(convergence). Convergence is typically reached
when the cluster centers no longer change (or
change minimally) between iterations.

If convergence is not reached, the algorithm goes
back to the Assign data points in parallel step,
continuing the process of reassigning points and
recalculating cluster centers until the cluster
centers stabilize.

8. Output: Once convergence is achieved, the
algorithm produces the final cluster centers and
their corresponding clusters as output.

Integration with Supervised Learning: Cluster
labels were used as new features in classification
models such as KNN, SVM, Random Forest, and
Neural Network. Performance was evaluated
using accuracy, precision, recall, and F1-score.

Evaluation metrics:-
i. Cluster Quality Metrics:

WCSS: Measures compactness of clusters.
Lower values indicate better performance.

Silhouette Score: Assesses cluster separation.
Higher scores suggest well-defined clusters.

Davies-Bouldin Index: Lower values indicate
better-defined clusters.

ii. Computational Efficiency Metrics:

Speedup: Compares the performance
improvement of parallel K-Means over standard
K-Means.

Efficiency: Measures resource optimization in a
parallel environment.

Scalability: Evaluates how both algorithms
perform with increasing dataset sizes.

Page | 25

Throughput: Assesses the data processing speed
of both algorithms.

V. RESULTS AND DISCUSSIONS

The experimental analysis compared K-Means
and Parallel K-Means across datasets of 1,000
and 100,000 records. Parallel K-Means achieved
nearly 6x speedup, higher Silhouette Score (0.74
vs. 0.61), and better efficiency (94%). Neural
Network accuracy improved from 89% to 96%,
while Random Forest achieved 95% accuracy,
showing better generalization on larger datasets.
PCA and Silhouette plots confirmed better-
separated clusters. Scalability tests showed near-
linear performance gain with increasing data size
and CPU cores.

Comparison of Training and Testing Accuracies Across Models

Taiing Accuracy
100 Testing Accuracy

KNN Neural Networks Randem Forest SVM
Models

Figure 3 Optimizing Model Performance Using
Parallel K-Means and Dataset Expansion

Table II Comparison Parallel K-Mean and K-
Mean

Model Parallel K- K-Means
Means
Traini | Testin | Trainin | Testin
ng g g g
Accur | Accura | Accura | Accur
acy cy cy acy
KNN 87% 80% 74% 76%
NN 87% 88% 75% 69%
RF 100% 93% 94% 87%
SVM 79% 81% 18% 18%

Moadel Accuracies: Parallel K-Means vs k-Means

Figure 4 Comparison Parallel K-Mean and K-
Mean

VI. CONCLUSION

The study demonstrates that Parallel K-Means
provides a substantial performance improvement
over traditional K-Means in clustering student
academic datasets. The algorithm’s scalability
and reduced computation time make it suitable
for real-time educational intelligence systems. Its
integration with machine learning models
enhances predictive accuracy, proving its value
as a preprocessing step in educational analytics
pipelines.

VII. FUTURE SCOPE

Future work can extend this research by
implementing dynamic parallel clustering for
streaming student data, exploring GPU-
accelerated and federated clustering frameworks,
integrating autoencoders for feature reduction
before clustering, and deploying the model in
cloud or edge computing environments for real-
time educational dashboards.

REFERENCES

[1] Bellavita, J., Pasquali, T., Martin, L. D. R,
Vella, F., & Guidi, G. (2025). Popcorn:
Accelerating Kernel K-Means on GPUs
through Sparse Linear Algebra. ACM
SIGPLAN Symposium, 426—440.

[2] Song, Y., Kim, H.-J., Lee, H.-J., & Chang,
J.-W. (2024). Parallel Privacy-Preserving K-
Means Clustering Algorithm for Encrypted
Databases in Cloud Computing. Applied
Sciences, 14(2), 835.

[3] Dafir, Z., & Slaoui, S. (2022). Efficient
Parallel Algorithm for Clustering Big Data

Page | 26

(4]

(6]

Based on Spark Framework. IJACSA, 13(7),
890-896.

Mhembere, D., Zheng, D., Priebe, C.,
Vogelstein, J. T., & Burns, R. (2017). Knor:
A NUMA-Optimized In-Memory,
Distributed and Semi-External-Memory K-
Means Library. ACM HPDC, 67-78.
Mussabayev, R., & Mussabayev, R. (2024).
Superior Parallel Big Data Clustering
through Competitive Stochastic Sample Size
Optimization. Asian Conference on
Intelligent Information and Database
Systems, 224-236.

Long, J., & Liu, L. (2025). K-Means: An
Efficient Clustering Algorithm with
Adaptive Decision Boundaries. International
Journal of Parallel Programming, 53(1).

Page | 27

