

Page | 23

Performance Analysis of Parallel K-Means

Clustering on Student Academic Data: A

Scalable Approach for Educational

Intelligence

Gautam Appasaheb Kudale1, Dr. Gaurav Gupta2

Reseach Scholar, Dr. A.P.J. Abdul Kalam University, Indore, M.P., India1

Reseach Guide, Dr. A.P.J. Abdul Kalam University, Indore, M.P., India2

gaukudale@gmail.com

Abstract—The rapid growth of educational data has

necessitated scalable machine learning approaches

for effective analysis and prediction. Traditional K-

Means clustering, though efficient for small datasets,

faces scalability challenges with large and high-

dimensional data. This paper presents an

implementation of Parallel K-Means Clustering

using PySpark, designed to enhance computational

efficiency and accuracy for educational datasets.

Using the “Students Performance in Exams” dataset

from Kaggle, the study compares standard and

parallel K-Means algorithms across multiple metrics

such as Within-Cluster Sum of Squares (WCSS),

Silhouette Score, and Davies-Bouldin Index, along

with system-level metrics like speedup, efficiency,

and scalability. The results demonstrate that the

parallelized version significantly reduces execution

time and improves cluster quality. Furthermore,

integration with supervised models (KNN, SVM, NN,

and RF) shows enhanced classification accuracy—

up to 96% using Neural Networks—highlighting the

practical benefits of parallel clustering in

educational data mining. This work establishes a

foundation for deploying Parallel K-Means in real-

time educational intelligence systems, enabling rapid

and reliable insights into student performance

trends.

Index Terms - Parallel K-Means, Educational Data

Mining, PySpark, Scalability, Clustering, Student

Performance Dataset

I. INTRODUCTION

The explosion of data in the education domain

calls for efficient analytical models that can

extract actionable insights. Clustering algorithms

like K-Means are widely used for unsupervised

learning; however, their sequential nature limits

performance with large datasets. This research

explores a Parallel K-Means algorithm

implemented in PySpark to address these

limitations. The motivation stems from the need

for real-time educational intelligence, where

scalable clustering can aid in identifying learning

patterns and performance groups among

students.

The study’s primary objective is to analyze and

compare the performance of standard and

parallel K-Means clustering using the Students

Performance in Exams dataset. The parallel

approach leverages distributed computing to

accelerate convergence and handle large-scale

data efficiently. This investigation contributes to

advancing educational analytics by

demonstrating how parallelization enhances both

clustering accuracy and computational

efficiency.

II. RELATED WORKS

Extensive research has been conducted on

clustering optimization and parallelization.

Studies such as Song et al. (2024) proposed

privacy-preserving parallel clustering for large

datasets, while Dafir and Slaoui (2022)

demonstrated Spark-based parallel algorithms

achieving significant performance gains.

Mhembere et al. (2017) introduced Knor, a

NUMA-optimized K-Means library, and

mailto:gaukudale@gmail.com

Page | 24

Bellavita et al. (2025) leveraged GPU

acceleration for faster kernel K-Means

operations. In education, clustering has been

effectively used to analyze student performance

and group learning behaviors, but few studies

explore parallel clustering in this domain. Hence,

this paper fills a crucial research gap by applying

a Parallel K-Means framework specifically for

student performance data analysis.

III. PROBLEM DEFINITION

The traditional K-Means algorithm suffers from

computational inefficiency when applied to large

educational datasets due to its sequential

computation, slow convergence, and inability to

exploit multi-core architectures. Problem

Statement: To overcome the scalability and

speed limitations of traditional K-Means in

educational data analysis by implementing a

Parallel K-Means clustering algorithm using

distributed computing, thereby improving

execution time and clustering quality for large

student datasets.

IV. PROPOSED METHODOLOGY

Dataset Description: The Students Performance

in Exams dataset from Kaggle includes attributes

such as gender, race/ethnicity, parental education

level, lunch type, test preparation course, and

scores in math, reading, and writing. The dataset

contains 1000 records initially, and then the

dataset is populated to 10000 to 100000. Data

preprocessing involved handling missing values,

normalization, and applying SMOTE for class

balancing. Following table shows detailed

information of all attributes of the Students

Performance in Exams dataset.

Table I. Variables Description of Students

Performance in Exams dataset.

Variable

name

Values

Variable

Description

Gender Male, Female Student’s

gender

Race/ethnicity category A,

category B,

category C,

category D,

category E

Ethnicity of

the student

Parental level

of education

bachelor's

degree

some college

master's

degree

associate's

degree

high school

some high

school

Educational

background

of the parents

Lunch Standard,

Free/Reduced

Quality of

lunch

Test

preparation

course

Completed,

Not

Completed

Completing

the Test

Preparation

course

Math score 0-100 Student’s

math score

Reading score 0-100 Student’s

reading

score

Writing score 0-100 Student’s

writing

score

Figure 1 Categorical Data Distribution and

Characteristics

Algorithm Implementation: Tools used

include Python, Apache Spark (PySpark), and

Pandas. The data is partitioned across multiple

Spark nodes, where each node performs centroid

assignment and update independently.

Evaluation metrics include cluster quality

(WCSS, Silhouette Score, Davies-Bouldin

Index) and computational efficiency (execution

Page | 25

time, speedup, efficiency, scalability,

throughput).

Figure 2: Parallel K-Mean Process

The flowchart illustrates the iterative process of

Parallel K-Means

1. Start: The process begins here, marking the

start of the Parallel K-Means clustering

algorithm.

2. Select number of clusters (k): The number of

clusters, k, is specified by the user. This

determines how many clusters the algorithm will

aim to form.

3. Set initial cluster centers: The algorithm

randomly selects initial cluster centers

(centroids) from the dataset. These serve as the

initial guess for cluster centers.

4. Partition dataset across processors: The entire

dataset is divided into smaller partitions, which

are distributed across multiple processors. This is

a key aspect of the parallel version, where

different portions of the data are handled

independently to speed up the computation.

5. Assign data points in parallel: Each processor,

working on its partition, assigns data points to

the closest cluster center. This task is performed

simultaneously across processors, taking

advantage of parallel execution.

6. Recalculate cluster centers in parallel: After

assigning the data points to clusters, each

processor recalculates the cluster centers based

on the assigned data points. This recalculation is

done independently on each processor in parallel.

7. Check convergence: The algorithm checks

whether the cluster centers have stabilized

(convergence). Convergence is typically reached

when the cluster centers no longer change (or

change minimally) between iterations.

If convergence is not reached, the algorithm goes

back to the Assign data points in parallel step,

continuing the process of reassigning points and

recalculating cluster centers until the cluster

centers stabilize.

8. Output: Once convergence is achieved, the

algorithm produces the final cluster centers and

their corresponding clusters as output.

Integration with Supervised Learning: Cluster

labels were used as new features in classification

models such as KNN, SVM, Random Forest, and

Neural Network. Performance was evaluated

using accuracy, precision, recall, and F1-score.

Evaluation metrics:-

i. Cluster Quality Metrics:

WCSS: Measures compactness of clusters.

Lower values indicate better performance.

Silhouette Score: Assesses cluster separation.

Higher scores suggest well-defined clusters.

Davies-Bouldin Index: Lower values indicate

better-defined clusters.

ii. Computational Efficiency Metrics:

Speedup: Compares the performance

improvement of parallel K-Means over standard

K-Means.

Efficiency: Measures resource optimization in a

parallel environment.

Scalability: Evaluates how both algorithms

perform with increasing dataset sizes.

Page | 26

Throughput: Assesses the data processing speed

of both algorithms.

V. RESULTS AND DISCUSSIONS

The experimental analysis compared K-Means

and Parallel K-Means across datasets of 1,000

and 100,000 records. Parallel K-Means achieved

nearly 6x speedup, higher Silhouette Score (0.74

vs. 0.61), and better efficiency (94%). Neural

Network accuracy improved from 89% to 96%,

while Random Forest achieved 95% accuracy,

showing better generalization on larger datasets.

PCA and Silhouette plots confirmed better-

separated clusters. Scalability tests showed near-

linear performance gain with increasing data size

and CPU cores.

Figure 3 Optimizing Model Performance Using

Parallel K-Means and Dataset Expansion

Table II Comparison Parallel K-Mean and K-

Mean

Model

Parallel K-

Means

K-Means

Traini

ng

Accur

acy

Testin

g

Accura

cy

Trainin

g

Accura

cy

Testin

g

Accur

acy

 KNN 87% 80% 74% 76%

 NN 87% 88% 75% 69%

RF 100% 93% 94% 87%

SVM 79% 81% 18% 18%

Figure 4 Comparison Parallel K-Mean and K-

Mean

VI. CONCLUSION

The study demonstrates that Parallel K-Means

provides a substantial performance improvement

over traditional K-Means in clustering student

academic datasets. The algorithm’s scalability

and reduced computation time make it suitable

for real-time educational intelligence systems. Its

integration with machine learning models

enhances predictive accuracy, proving its value

as a preprocessing step in educational analytics

pipelines.

VII. FUTURE SCOPE

Future work can extend this research by

implementing dynamic parallel clustering for

streaming student data, exploring GPU-

accelerated and federated clustering frameworks,

integrating autoencoders for feature reduction

before clustering, and deploying the model in

cloud or edge computing environments for real-

time educational dashboards.

REFERENCES

[1] Bellavita, J., Pasquali, T., Martin, L. D. R.,

Vella, F., & Guidi, G. (2025). Popcorn:

Accelerating Kernel K-Means on GPUs

through Sparse Linear Algebra. ACM

SIGPLAN Symposium, 426–440.

[2] Song, Y., Kim, H.-J., Lee, H.-J., & Chang,

J.-W. (2024). Parallel Privacy-Preserving K-

Means Clustering Algorithm for Encrypted

Databases in Cloud Computing. Applied

Sciences, 14(2), 835.

[3] Dafir, Z., & Slaoui, S. (2022). Efficient

Parallel Algorithm for Clustering Big Data

Page | 27

Based on Spark Framework. IJACSA, 13(7),

890–896.

[4] Mhembere, D., Zheng, D., Priebe, C.,

Vogelstein, J. T., & Burns, R. (2017). Knor:

A NUMA-Optimized In-Memory,

Distributed and Semi-External-Memory K-

Means Library. ACM HPDC, 67–78.

[5] Mussabayev, R., & Mussabayev, R. (2024).

Superior Parallel Big Data Clustering

through Competitive Stochastic Sample Size

Optimization. Asian Conference on

Intelligent Information and Database

Systems, 224–236.

[6] Long, J., & Liu, L. (2025). K-Means: An

Efficient Clustering Algorithm with

Adaptive Decision Boundaries. International

Journal of Parallel Programming, 53(1).

