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Abstract—The rapid growth of educational data has 

necessitated scalable machine learning approaches 

for effective analysis and prediction. Traditional K-

Means clustering, though efficient for small datasets, 

faces scalability challenges with large and high-

dimensional data. This paper presents an 

implementation of Parallel K-Means Clustering 

using PySpark, designed to enhance computational 

efficiency and accuracy for educational datasets. 

Using the “Students Performance in Exams” dataset 

from Kaggle, the study compares standard and 

parallel K-Means algorithms across multiple metrics 

such as Within-Cluster Sum of Squares (WCSS), 

Silhouette Score, and Davies-Bouldin Index, along 

with system-level metrics like speedup, efficiency, 

and scalability. The results demonstrate that the 

parallelized version significantly reduces execution 

time and improves cluster quality. Furthermore, 

integration with supervised models (KNN, SVM, NN, 

and RF) shows enhanced classification accuracy—

up to 96% using Neural Networks—highlighting the 

practical benefits of parallel clustering in 

educational data mining. This work establishes a 

foundation for deploying Parallel K-Means in real-

time educational intelligence systems, enabling rapid 

and reliable insights into student performance 

trends. 

Index Terms - Parallel K-Means, Educational Data 

Mining, PySpark, Scalability, Clustering, Student 

Performance Dataset 

I. INTRODUCTION 

The explosion of data in the education domain 

calls for efficient analytical models that can 

extract actionable insights. Clustering algorithms 

like K-Means are widely used for unsupervised 

learning; however, their sequential nature limits 

performance with large datasets. This research 

explores a Parallel K-Means algorithm 

implemented in PySpark to address these 

limitations. The motivation stems from the need 

for real-time educational intelligence, where 

scalable clustering can aid in identifying learning 

patterns and performance groups among 

students. 

The study’s primary objective is to analyze and 

compare the performance of standard and 

parallel K-Means clustering using the Students 

Performance in Exams dataset. The parallel 

approach leverages distributed computing to 

accelerate convergence and handle large-scale 

data efficiently. This investigation contributes to 

advancing educational analytics by 

demonstrating how parallelization enhances both 

clustering accuracy and computational 

efficiency. 

II. RELATED WORKS 

Extensive research has been conducted on 

clustering optimization and parallelization. 

Studies such as Song et al. (2024) proposed 

privacy-preserving parallel clustering for large 

datasets, while Dafir and Slaoui (2022) 

demonstrated Spark-based parallel algorithms 

achieving significant performance gains. 

Mhembere et al. (2017) introduced Knor, a 

NUMA-optimized K-Means library, and 
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Bellavita et al. (2025) leveraged GPU 

acceleration for faster kernel K-Means 

operations. In education, clustering has been 

effectively used to analyze student performance 

and group learning behaviors, but few studies 

explore parallel clustering in this domain. Hence, 

this paper fills a crucial research gap by applying 

a Parallel K-Means framework specifically for 

student performance data analysis. 

III. PROBLEM DEFINITION 

The traditional K-Means algorithm suffers from 

computational inefficiency when applied to large 

educational datasets due to its sequential 

computation, slow convergence, and inability to 

exploit multi-core architectures. Problem 

Statement: To overcome the scalability and 

speed limitations of traditional K-Means in 

educational data analysis by implementing a 

Parallel K-Means clustering algorithm using 

distributed computing, thereby improving 

execution time and clustering quality for large 

student datasets. 

IV. PROPOSED METHODOLOGY 

Dataset Description: The Students Performance 

in Exams dataset from Kaggle includes attributes 

such as gender, race/ethnicity, parental education 

level, lunch type, test preparation course, and 

scores in math, reading, and writing. The dataset 

contains 1000 records initially, and then the 

dataset is populated to 10000 to 100000. Data 

preprocessing involved handling missing values, 

normalization, and applying SMOTE for class 

balancing. Following table shows detailed 

information of all attributes of the Students 

Performance in Exams dataset. 

Table I. Variables Description of Students 

Performance in Exams dataset. 

Variable 

name  
 

Values  
 

Variable 

Description 

Gender Male, Female Student’s 

gender  
 

Race/ethnicity category A, 

category B, 

category C, 

category D, 

category E 

Ethnicity of 

the student 

Parental level 

of education 

bachelor's 

degree  

some college 

master's 

degree  

associate's 

degree 

high school 

some high 

school 

Educational 

background 

of the parents 

Lunch Standard, 

Free/Reduced 

Quality of 

lunch 

Test 

preparation 

course 

Completed, 

Not 

Completed 

Completing 

the Test 

Preparation 

course 

Math score 0-100 Student’s 

math score 

 

Reading score 0-100 Student’s 

reading 

score 

 

Writing score 0-100 Student’s 

writing 

score 

 

 

 

Figure 1 Categorical Data Distribution and 

Characteristics 

Algorithm Implementation: Tools used 

include Python, Apache Spark (PySpark), and 

Pandas. The data is partitioned across multiple 

Spark nodes, where each node performs centroid 

assignment and update independently. 

Evaluation metrics include cluster quality 

(WCSS, Silhouette Score, Davies-Bouldin 

Index) and computational efficiency (execution 
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time, speedup, efficiency, scalability, 

throughput). 

 

Figure 2: Parallel K-Mean Process 

The flowchart illustrates the iterative process of 

Parallel K-Means 

1. Start: The process begins here, marking the 

start of the Parallel K-Means clustering 

algorithm. 

2. Select number of clusters (k): The number of 

clusters, k, is specified by the user. This 

determines how many clusters the algorithm will 

aim to form. 

3. Set initial cluster centers: The algorithm 

randomly selects initial cluster centers 

(centroids) from the dataset. These serve as the 

initial guess for cluster centers. 

4. Partition dataset across processors: The entire 

dataset is divided into smaller partitions, which 

are distributed across multiple processors. This is 

a key aspect of the parallel version, where 

different portions of the data are handled 

independently to speed up the computation. 

5. Assign data points in parallel: Each processor, 

working on its partition, assigns data points to 

the closest cluster center. This task is performed 

simultaneously across processors, taking 

advantage of parallel execution. 

6. Recalculate cluster centers in parallel: After 

assigning the data points to clusters, each 

processor recalculates the cluster centers based 

on the assigned data points. This recalculation is 

done independently on each processor in parallel. 

7. Check convergence: The algorithm checks 

whether the cluster centers have stabilized 

(convergence). Convergence is typically reached 

when the cluster centers no longer change (or 

change minimally) between iterations. 

If convergence is not reached, the algorithm goes 

back to the Assign data points in parallel step, 

continuing the process of reassigning points and 

recalculating cluster centers until the cluster 

centers stabilize. 

8. Output: Once convergence is achieved, the 

algorithm produces the final cluster centers and 

their corresponding clusters as output. 

Integration with Supervised Learning: Cluster 

labels were used as new features in classification 

models such as KNN, SVM, Random Forest, and 

Neural Network. Performance was evaluated 

using accuracy, precision, recall, and F1-score. 

Evaluation metrics:-  

i. Cluster Quality Metrics: 

WCSS: Measures compactness of clusters. 

Lower values indicate better performance. 

Silhouette Score: Assesses cluster separation. 

Higher scores suggest well-defined clusters. 

Davies-Bouldin Index: Lower values indicate 

better-defined clusters. 

ii. Computational Efficiency Metrics: 

Speedup: Compares the performance 

improvement of parallel K-Means over standard 

K-Means. 

Efficiency: Measures resource optimization in a 

parallel environment. 

Scalability: Evaluates how both algorithms 

perform with increasing dataset sizes. 
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Throughput: Assesses the data processing speed 

of both algorithms. 

V. RESULTS AND DISCUSSIONS 

The experimental analysis compared K-Means 

and Parallel K-Means across datasets of 1,000 

and 100,000 records. Parallel K-Means achieved 

nearly 6x speedup, higher Silhouette Score (0.74 

vs. 0.61), and better efficiency (94%). Neural 

Network accuracy improved from 89% to 96%, 

while Random Forest achieved 95% accuracy, 

showing better generalization on larger datasets. 

PCA and Silhouette plots confirmed better-

separated clusters. Scalability tests showed near-

linear performance gain with increasing data size 

and CPU cores. 

 

Figure 3 Optimizing Model Performance Using 

Parallel K-Means and Dataset Expansion 

Table II Comparison Parallel K-Mean and K-

Mean 

Model 

 

Parallel K-

Means  

 

K-Means  

 

Traini

ng 

Accur

acy 

Testin

g 

Accura

cy 

Trainin

g 

Accura

cy 

Testin

g 

Accur

acy 

 KNN 87% 80% 74% 76% 

 NN 87% 88% 75% 69% 

RF 100% 93% 94% 87% 

SVM 79% 81% 18% 18% 

 

 

Figure 4 Comparison Parallel K-Mean and K-

Mean 

VI. CONCLUSION 

The study demonstrates that Parallel K-Means 

provides a substantial performance improvement 

over traditional K-Means in clustering student 

academic datasets. The algorithm’s scalability 

and reduced computation time make it suitable 

for real-time educational intelligence systems. Its 

integration with machine learning models 

enhances predictive accuracy, proving its value 

as a preprocessing step in educational analytics 

pipelines. 

VII. FUTURE SCOPE 

Future work can extend this research by 

implementing dynamic parallel clustering for 

streaming student data, exploring GPU-

accelerated and federated clustering frameworks, 

integrating autoencoders for feature reduction 

before clustering, and deploying the model in 

cloud or edge computing environments for real-

time educational dashboards. 
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